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ABSTRACT The 16S rRNA gene has been extensively used as a molecular marker to
explore evolutionary relationships and profile microbial composition throughout various
environments. Despite its convenience and prevalence, limitations are inevitable. Variable
copy numbers, intragenomic heterogeneity, and low taxonomic resolution have caused
biases in estimating microbial diversity. Here, analysis of 24,248 complete prokaryotic
genomes indicated that the 16S rRNA gene copy number ranged from 1 to 37 in bacteria
and 1 to 5 in archaea, and intragenomic heterogeneity was observed in 60% of prokary-
otic genomes, most of which were below 1%. The overestimation of microbial diversity
caused by intragenomic variation and the underestimation introduced by interspecific
conservation were calculated when using full-length or partial 16S rRNA genes. Results
showed that, at the 100% threshold, microbial diversity could be overestimated by as
much as 156.5% when using the full-length gene. The V4 to V5 region-based analyses
introduced the lowest overestimation rate (4.4%) but exhibited slightly lower species reso-
lution than other variable regions under the 97% threshold. For different variable regions,
appropriate thresholds rather than the canonical value 97% were proposed for minimiz-
ing the risk of splitting a single genome into multiple clusters and lumping together dif-
ferent species into the same cluster. This study has not only updated the 16S rRNA gene
copy number and intragenomic variation information for the currently available prokary-
otic genomes, but also elucidated the biases in estimating prokaryotic diversity with
quantitative data, providing references for choosing amplified regions and clustering
thresholds in microbial community surveys.

IMPORTANCE Microbial diversity is typically analyzed using marker gene-based meth-
ods, of which 16S rRNA gene sequencing is the most widely used approach. However,
obtaining an accurate estimation of microbial diversity remains a challenge, due to the
intragenomic variation and low taxonomic resolution of 16S rRNA genes. Comprehensive
examination of the bias in estimating such prokaryotic diversity using 16S rRNA genes
within ever-increasing prokaryotic genomes highlights the importance of the choice of
sequencing regions and clustering thresholds based on the specific research objectives.

KEYWORDS 16S rRNA gene, interspecific conservation, intragenomic heterogeneity,
microbial diversity

The 16S rRNA gene, with a length of ;1,500 bp, includes nine hypervariable regions
(V1 to V9) interspersed by highly conserved sequences (1). The conserved regions

can be used for binding universal primers targeting 16S rRNA genes for a wide range
of prokaryotes, while the variable regions are taxon-specific and are commonly used to
distinguish between microbial taxa (2). Next-generation sequencing (NGS) of marker
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genes, notably the 16S rRNA gene, has provided the means to profile microbial compo-
sition in different environmental samples, ranging from human body sites (e.g., gut,
oral cavity) (3, 4) to various natural habitats, including soil, ocean, and glacier (5–7).
One of the most popular and widely used NGS platforms is Illumina MiSeq (8), which is
capable of generating, at most, 300-bp paired-end reads. Consequently, only partial
fragments, rather than the complete 16S rRNA genes, were amplified and sequenced
in the majority of microbial ecology studies, which generally covered single to three
variable regions, such as the V4 (used in the Earth Microbiome Project) (9), V3-V4, and
V1-V3 regions.

Despite the amplicon analysis based on 16S rRNA gene becoming the principal
methodology in surveys of microbial communities, there are inevitable with limitations
and challenges (10, 11). Estimation of the microbial diversity of any specific environ-
ment via amplicon analysis could be biased due to errors introduced by PCR and
sequencing, intragenomic divergence, and insufficient intergenomic variation. It is
now generally accepted that most individual bacterial genomes harbor multiple 16S
rRNA genes, either identical or frequently distinct, thus resulting in the intragenomic
heterogeneity of prokaryotes’ 16S rRNA genes (12–15). Consequently, taxonomic mis-
classification and overestimation of microbial diversity are likely to occur when con-
ducting bioinformatic analysis. Throughout the 16S rRNA gene, the V4 to V5 region
was proposed as the optimal region for 16S rRNA gene-based microbial analyses due
to its least intragenomic variation (12). This result was drawn via the analysis of 2,013
complete genomes available during the study, which is remarkably fewer than the
amount that can be retrieved nowadays, thus calling into question the tenability of
this conclusion. In addition, highly similar and even identical rRNA gene sequences
exist in different species, and thus they are likely to be classified into the same cluster
based on the commonly used 97% identity threshold regardless of their differentia,
resulting in the underestimation of the extant prokaryotic diversity (16). Different sub-
regions of rRNA genes could introduce various degrees of bias in the estimation of
community diversity, and this attaches vital significance to assessing the subregions of
the 16S rRNA gene for selecting appropriate variable regions and minimizing the risk
of misestimating microbial diversity.

Sequence clustering is most commonly used in data analysis after 16S rRNA gene par-
tial amplicon reads are generated by next-generation sequencing, which assigns reads to
specific sets of operational taxonomic units (OTUs). The process can be performed based
on a given identity threshold (e.g., 97%) using algorithms such as OptiClust, nearest neigh-
bor, or furthest neighbor. With the rapid development of whole-genome sequencing tech-
nology and the rapidly growing number of small subunit rRNA genes available, higher
thresholds for full-length 16S rRNA gene have been recommended as the boundary for
species delineation, such as 98.5% (17), 98.65% (18), and 98.7 to 99.0% (19), revealing more
stringent standards than the canonical value, 97% (20). These studies generally focused on
the full-length 16S rRNA genes, but appropriate identity thresholds for different variable
regions, largely used in ecological studies, have not been thoroughly investigated. In addi-
tion to the aforementioned clustering methods, several denoising methods are increasingly
prevalent in processing amplicon reads. A denoising algorithm infers sample sequences
exactly by correcting amplicon errors, and each unique sequence obtained is defined as an
amplicon sequence variant (ASV), approximately equal to 100% OTU (the identity threshold
100% is used). ASV offers higher taxonomic resolution but increases the possibility of split-
ting single strain into multiple clusters. For example, Escherichia coli K-12 MG1655 harbors
seven copies of the 16S rRNA gene that can be divided into five types based on sequence
differences, and each type represents an ASV. However, quantitative information about the
risk of diversity-biased estimation by applying ASVs for different variable regions remains
limited. This study aims to quantify the risk of splitting a single genome into multiple clus-
ters and lumping together different species into the same cluster when using different
identity thresholds (ASV or OTU).

In this study, we analyzed the 16S rRNA gene copy number and the intragenomic
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variation among divergent copies in 24,248 prokaryotic genomes (as of November
2021) retrieved from the RefSeq database. The bias in estimating microbial diversity
introduced by intragenomic heterogeneity or interspecific conservation was quantified
under a range of identity thresholds using full-length or subregions of the 16S rRNA
gene. In addition, different clustering thresholds for 11 amplified regions were eval-
uated based on three metrics: oversplitting, overmerging, and total error rate. Results
indicate that the clustering threshold can be adjusted according to the selected ampli-
fied regions in specific circumstances for minimizing the risk of splitting one strain into
multiple clusters or merging distinct species into the same cluster.

RESULTS

In this study, 24,248 complete genomes (399 archaea, 23,849 bacteria) belonging
to 6,889 unique species were obtained from the National Center for Biotechnology
Information (NCBI) complete genome database in November 2021 (see detailed infor-
mation for genomes in File S1 in the supplemental material). The 16S rRNA gene
sequences were successfully retrieved from each genome. These 6,889 species were from
46 different phyla (Table 1), of which the Proteobacteria, with 3,198 unique species, were
the most abundant, followed by Actinobacteria (1,172 species), Firmicutes (1,039 species),
Bacteroidetes (518 species), Euryarchaeota (217 species), Cyanobacteria (159 species), and
Tenericutes (137 species). The remaining 39 phyla were represented by fewer than 100 spe-
cies per phylum. When performing Genome Taxonomy Database (GTDB) classification,
24,037 of the 24,248 genomes were taxonomically identified to the species level (6,265
GTDB species), and the remaining genomes were not classified into specific species.
Because both NCBI taxonomy and GTDB taxonomy were used, taxonomic names men-
tioned in this study refer to the NCBI taxonomy unless otherwise specified.

16S rRNA gene copy number in archaea and bacteria. The 16S rRNA gene copy
number ranged from 1 to 5 in archaea and 1 to 37 in bacteria (Fig. 1). The maximum copy
number of 37 was observed in Tumebacillus avium AR23208, which was considerably larger
than the previously published value (15 copies) obtained using several smaller databases
(12, 13, 15). Only 8% of the bacterial genomes contained a single 16S rRNA gene, while
more than half of the archaeal genomes contained one copy. Bacteria with seven copies
were the most abundant (4,465 genomes), and copy numbers greater than 15 were rela-
tively rare, with a total of 31 genomes. The average copy number was 5.36 2.8 for bacteria,
which is apparently higher than that for archaea (1.7 6 0.9). In total, 127,003 copies of the
16S rRNA gene were identified, with an average of 5.2 copies per prokaryotic genome.

The copy number of 16S rRNA genes within individual genomes was taxon specific
at several taxonomic levels. The mean copy number per phylum ranged between 1
and 6.9 6 2.8 (Table 1, Fig. S1). Among bacterial phyla, the Firmicutes had an average
copy number of 6.9 6 2.8, which was the highest of all phyla, followed by the
Proteobacteria (5.5 6 2.5) and Fusobacteria (5.2 6 1.1). Low mean copy numbers were
observed in the Acidobacteria (1.1 6 0.3), Thermodesulfobacteria (1.1 6 0.4), and
Chloroflexi (1.4 6 0.7). For archaeal phyla, the average copy number of 16S rRNA genes
was 2.0 6 0.9 in Euryarchaeota and 1.2 6 0.5 in Thaumarchaeota, while the rest of the
archaeal phyla contained only one copy of the 16S rRNA gene on average.

Intragenomic heterogeneity of 16S rRNA genes in prokaryotic genomes. As
described above, many prokaryotic genomes harbored multiple 16S rRNA genes, and we
further investigated whether different copies are identical and the extent of possible differ-
ences. The number of 16S rRNA gene sequence variants showed an upward trend as the
copy number within individual genomes increased (Fig. 2A). On average, there were three
16S rRNA gene variants in a genome. The intragenomic variation of 16S rRNA gene sequen-
ces was observed in about 60% of genomes (14,502 out of 24,248 genomes) (Fig. S2), in
which the number of variants ranged between 2 and 37. The detailed information about
intragenomic variation detected within each genome is available in File S1. The majority of
the heterogeneity detected was below 1% in DNA sequences (12,642 out of 14,502
genomes), but the remaining 1,860 genomes had intragenomic heterogeneity greater than
1%, which may result in false taxonomic classification using 16S rRNA-based methods.
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There were as many as 37 variants in Tumebacillus avium AR23208, and the distances of var-
iants varied from 0.06% to 1.49%. The greatest heterogeneity calculated was found in
Listeria monocytogenes 10-092876-1155 LM6 (27.9%) (Fig. 2B), which contained 5 distinct
copies of the 16S rRNA gene (Fig. S3). It is also noteworthy that although archaea generally
contain fewer copies of the 16S rRNA gene, the intragenomic divergence of the 16S gene
existed in 119 out of 179 archaeal strains with multiple copies. Moreover, we also found
that all strains in some species with two or more sequenced genomes exhibited high intra-
genomic variation, as shown in Table S1, including pathogenic bacteria Borreliella afzelii and
Streptococcus iniae and extremophiles Thermobispora bispora, Haloarcula marismortui,
Haloarcula hispanica, and Halomicrobium mukohataei. The stable presence of distinct rRNA
variants in these species suggested that variants may have specific physiological functions.

TABLE 1 Overview of archaeal and bacterial genomes at the NCBI phylum level

Superkingdom Phylum
No. of
genera

No. of
species

No. of
genomes

Avg 16S rRNA gene
copy (mean± SD)

Archaea “Candidatus Korarchaeota” 1 1 1 1
“Candidatus Lokiarchaeota” 1 1 1 1
“CandidatusMicrarchaeota” 2 2 2 1
“Candidatus Nanohaloarchaeota” 1 1 1 1
“Candidatus Thermoplasmatota” 8 10 14 1
Crenarchaeota 26 56 92 1
Euryarchaeota 72 217 263 2.06 0.9
Thaumarchaeota 9 25 25 1.26 0.5

Bacteria Unclassified 3 4 4 1
Acidobacteria 10 20 26 1.16 0.3
Actinobacteria 200 1,172 2,372 3.26 1.9
Aquificae 9 13 14 1.76 0.6
Armatimonadetes 1 1 1 2
Atribacterota 1 1 1 2
Bacteroidetes 145 518 879 4.16 2.3
Balneolaeota 1 1 1 3
Caldiserica 1 1 1 1
Calditrichaeota 1 1 1 1
“Candidatus Bipolaricaulota” 1 1 1 1
“Candidatus Cloacimonetes” 1 1 1 2
“Candidatus Omnitrophica” 1 1 1 1
“Candidatus Saccharibacteria” 2 2 2 1
Chlamydiae 8 25 188 1.76 0.5
Chlorobi 5 13 13 2.06 0.6
Chloroflexi 14 20 42 1.46 0.7
Chrysiogenetes 1 1 2 3
Coprothermobacterota 1 1 1 2
Cyanobacteria 50 159 188 2.56 1.1
Deferribacteres 5 5 5 2
Deinococcus-Thermus 6 32 61 2.66 0.8
Dictyoglomi 1 2 2 2
Elusimicrobia 2 3 4 1
Fibrobacteres 1 1 2 3
Firmicutes 257 1,039 5,266 6.96 2.8
Fusobacteria 7 27 76 5.26 1.1
Gemmatimonadetes 2 4 4 1.86 0.5
Ignavibacteriae 2 2 2 1
Kiritimatiellaeota 1 1 1 1
Nitrospirae 4 9 10 1.66 0.7
Planctomycetes 40 49 55 2.16 1.3
Proteobacteria 706 3,198 13,871 5.56 2.5
Spirochaetes 13 59 160 1.76 0.8
Synergistetes 5 5 5 3.26 1.1
Tenericutes 10 137 426 1.76 0.7
Thermodesulfobacteria 5 7 7 1.16 0.4
Thermotogae 11 32 41 1.96 1.2
Verrucomicrobia 12 18 112 2.86 0.6

Misestimation of Microbial Diversity by 16S rRNA Genes Applied and Environmental Microbiology

May 2023 Volume 89 Issue 5 10.1128/aem.02108-22 4

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/a

em
 o

n 
01

 J
un

e 
20

23
 b

y 
20

2.
12

0.
8.

25
0.

https://journals.asm.org/journal/aem
https://doi.org/10.1128/aem.02108-22


Bias in estimating microbial diversity using different hypervariable regions.
Given the intragenomic divergence of 16S RNA genes, multiple variants were likely to
be classified into different sequence clusters, resulting in an overestimation of micro-
bial diversity when using 16S rRNA gene-based approaches. The overestimation rates
were drawn in a previous study via the analysis of 2,013 complete genomes (12), yet
the number of sequenced genomes in the RefSeq database has already reached over
20,000, and an updated analysis seems necessary. Therefore, the degree of overestima-
tion was quantified using currently available larger data sets, and the results of this
analysis are shown in Table 2. At the ASV level, i.e., identity threshold 100%, an overes-
timation of 156.5% was measured when using full-length 16S rRNA genes, which was
significantly higher than values (27.3% to 110.5%) obtained when focusing on partial
regions. Intragenomic variation of the V6 region led to the lowest overestimation
(27.3%), followed by the V4 to V5 (28.3%) and V4 regions (28.8%). At the commonly
used threshold of 97%, the degree of overestimation was the lowest for the V4 to V5
(4.4%) and V7 to V9 (4.4%) regions, while it was highest for the V6 (14.0%) and V1 to
V2 (11.7%) regions. Similar results were obtained when using other clustering thresh-
olds between 97% and 100% (Fig. 3). It should be noted that, for full-length 16S genes,
the intragenomic heterogeneity-caused overestimation of species richness was signifi-
cantly decreased at the threshold level of 97% compared with 100%, indicating that a
specific threshold should be chosen to avoid biased estimations of species diversity.

On the other hand, some closely related but distinct taxa may share the same or
part of the same 16S rRNA gene, namely, insufficient interspecific variation, resulting in
the underestimation of microbial diversity. The degree of underestimation was calcu-
lated by comparing the number of species and OTUs generated by clustering. For lon-
ger amplicons such as fragments targeting the entire gene or the V1 to V3 region, their
diversities were generally underestimated by less than 15% under the 100% threshold,
whereas the number of species was greatly underestimated by shorter amplicons, such
as the V3, V4, and V6 regions (Table 2, Fig. 3). These results demonstrated that some

FIG 1 Distribution of 16S rRNA gene copy numbers within bacterial and archaeal genomes. Values above columns represent the
numbers of genomes containing the corresponding copies of 16S rRNA genes.
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closely related species were indistinguishable when using partial 16S genes due to the
conservative part of variable regions in certain taxa.

Considering that GTDB taxonomy is a phylogenetically consistent and rank-normalized
genome-based taxonomy (21), the GTDB taxonomic ranks of each genome were obtained
using GTDB-Tk (v2) (22), and the 16S rRNA gene sequence sets were constructed to calcu-
late the bias in estimating microbial diversity based on GTDB taxonomy. Apparently, similar
results were obtained using GTDB data sets with respect to NCBI data sets (Fig. S4; the
detailed data for the bias are shown in File S1). Intragenomic heterogeneity of the V4 to V5
region of the 16S rRNA gene resulted in the lowest overestimation (3.7% to 26.4%) of spe-
cies diversity at the threshold of 97% to 100% (Fig. S4A). As indicated in Fig. S4B, the full-
length amplicon yielded a diversity estimation which is close to the number of species at
the identity threshold of 100%, with only 1.7% fewer OTUs. In contrast, the partial gene
amplicons resulted in over 5% fewer OTUs. These results suggested that partial 16S rRNA

FIG 2 The numbers of variants and sequence differences between variants in prokaryotic genomes with variable
16S rRNA gene copy numbers. (A) The percentile distribution of sequence variant counts in prokaryotic genomes
with different 16S rRNA gene copy numbers. The colored areas in each grid indicate the percentage of the number
of genomes containing corresponding 16S gene variant counts (vertical coordinate) in all genomes harboring
corresponding 16S gene copy numbers (horizontal coordinate). The background color of the grid is gray, indicating
that the proportion is 0. (B) Intragenomic heterogeneity in prokaryotic genomes with different 16S rRNA gene copy
numbers; each dot represents a genome.
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genes from different GTDB species tended to be clustered together and thus provided lim-
ited implications for evolutionary relationship.

Intragenomic and intergenomic variation per base along the 16S rRNA gene.
To further investigate potential nucleotide positions that may lead to the overestimation of
species diversity, the average Shannon entropy of each base across the 16S rRNA gene
was calculated for archaea and bacteria. The entropy is used to represent intragenomic var-
iation per base position, and a high entropy value means that the nucleotide position con-
tains rich information, also referred to as high heterogeneity. It is apparent from Fig. 4A
that nucleotide positions with high Shannon entropy values (.0.04) tended to focus on
specific regions, such as the V1, V3, and V6 regions, whereas the nucleotide sites in the V4,
V5, V8, and V9 regions exhibited low Shannon entropy (,0.02), consistent with the obser-
vation of a smaller degree of overestimation introduced by targeting the V4 to V5 region.
In contrast, no significant differences were found between the entropy values of different
variable regions in archaea (Fig. 4B). This could be attributed to a smaller number of arch-
aeal genomes available compared to those of bacteria, and another possible explanation
for this is that archaea typically contain fewer 16S rRNA genes per genome. In terms of the
intergenomic variation per nucleotide position along the 16S gene, high Shannon entropy
was observed for nine hypervariable regions, as shown in Fig. 4C and D. The presence of
sufficient intergenomic variation likely enables 16S gene fragment-based analyses to be
employed for distinguishing different taxa at the genus and higher levels.

Oversplitting and overmerging rates under different clustering thresholds. For
the 11 amplified fragments, as shown in Fig. 5, the percentage of species assigned to multi-
ple clusters (oversplitting), the percentage of OTUs (ASVs) containing sequences from dif-
ferent species (overmerging), and the sum of these two values (total error) were calculated
under serial thresholds. In general, the oversplitting rate rose as the identity thresholds
increased, reaching 53% when considering the full-length rRNA gene with a threshold of
100%. When using thresholds of ,99%, the oversplitting rates were below 20% (Fig. 5),

TABLE 2 Degree of overestimation due to intragenomic heterogeneity and underestimation caused by insufficient interspecific variation for
different 16S rRNA gene regions under the ASV and 97%-OTU levels

Identity
threshold

16S gene
region

HIQ-T-NCBIa HIQ-C-NCBIa

Overestimation (%)b Underestimation (%)b
No. of
sequences

No. of
OTUs

No. of
sequences

No. of
OTUs

100% Full-length 29,416 15,727 6,550 6,131 156.5 6.4
V1–V2 29,459 10,287 6,562 5,433 89.3 17.2
V1–V3 28,883 11,623 6,339 5,523 110.5 12.9
V3 29,246 5,467 6,554 4,060 34.6 38.0
V3–V4 29,994 8,079 6,866 5,325 51.7 22.4
V4 29,903 5,593 6,829 4,341 28.8 36.4
V4–V5 30,020 5,636 6,890 4,392 28.3 36.2
V5–V7 29,058 7,333 6,402 4,823 52.0 24.7
V6 26,669 3,816 5,713 2,998 27.3 47.5
V6–V8 30,027 8,310 6,890 5,407 53.7 21.5
V7–V9 26,179 6,474 5,875 4,374 48.0 25.6

97% Full-length 29,416 3,181 6,550 3,035 4.8 53.7
V1–V2 29,459 4,074 6,562 3,647 11.7 44.4
V1–V3 28,883 3,788 6,339 3,478 8.9 45.1
V3 29,246 2,715 6,554 2,556 6.2 61.0
V3–V4 29,994 2,794 6,866 2,663 4.9 61.2
V4 29,903 2,284 6,829 2,186 4.5 68.0
V4–V5 30,020 2,314 6,890 2,217 4.4 67.8
V5–V7 29,058 2,511 6,402 2,384 5.3 62.8
V6 26,669 2,989 5,713 2,623 14.0 54.1
V6–V8 30,027 2,692 6,890 2,566 4.9 62.8
V7–V9 26,179 2,114 5,875 2,025 4.4 65.5

aHIQ-T-NCBI, the data set constructed considering intragenomic heterogeneity; HIQ-C-NCBI, the data set constructed ruling out intragenomic heterogeneity.
bThe overestimation rate was calculated as (A – B)/B � 100%, where A represents the number of OTUs from HIQ-T-NCBI and B represents the number of OTUs from HIQ-C-
NCBI. The underestimation rate was calculated as (C – B)/C � 100%, where C is the number of sequences in HIQ-C-NCBI.
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indicating that lower thresholds could be used to reduce the risk of splitting multiple rRNA
gene variants within the same species into different OTUs.

In contrast to oversplitting, the overmerging rate showed a significant decline as the
clustering threshold increased. For longer amplified fragments containing at least three vari-
able regions, such as full-length regions or the V7 to V9 region, as few as ;5% of the over-
merging rates were shown at high thresholds. However, for shorter fragments comprising
one or two adjacent variable regions, the percentage tended to be higher, for example, up
to 22% for the V6 region. This suggested that sequences from different species were more
likely to be combined into the same cluster when using shorter amplicons.

As shown in Fig. 5, there are three major changing trends for the total error rates
with the thresholds ranging from 97% to 100%. One is a clear trend of falling followed
by rising with increasing identity thresholds, such as full-length regions and the V3 to
V4 region, and the minimum can be found at specific thresholds: 98.5% to 99.0% for
the full-length 16S rRNA gene, 97.5% to 98.0% for the V1 to V2 region, 98.0% to 98.5%
for the V1 to V3 region, 99.0% to 99.5% for the V3 to V4 region, 98.8% to 99.3% for
the V6 to V8 region, and 98.7% to 99.2% for the V5 to V7/V7 to V9 regions. Another
pattern is displayed in the V3 and V6 regions; the total error remained nearly constant
at different thresholds from 97% to 100%. The third trend is as shown in the V4 and
V4 to V5 regions; the total error declines monotonically with increasing identity
thresholds, and the clustering thresholds from 99% to 100% were recommended for
the two variable regions. Furthermore, the optimal identity thresholds obtained using
data sets constructed based on GTDB taxonomy (Fig. S5), i.e., the thresholds corre-
sponding to the minimum total error rates, were consistent with those based on NCBI
taxonomy.

DISCUSSION

The copy number of 16S genes per genome ranged from 1 to 4 in archaea and 1 to
15 in bacteria (12, 13); these results were obtained a decade ago, so an updated analy-
sis is warranted, as the database has been amplified by almost 10-fold. The present
analysis revealed that, of the 24,248 prokaryotic genomes now available, the 16S rRNA
gene copy number of 31 genomes falls outside the boundaries reported previously (up

FIG 3 The degree of the overestimation introduced by intragenomic heterogeneity (left panel) and the underestimation caused by
the insufficient interspecific variation (right panel) for full-length and partial 16S rRNA genes (horizontal coordinates) at an identity
threshold of 97% to 100% (vertical coordinates). The above-described overestimation and underestimation rates were calculated
using data sets constructed based on NCBI taxonomy. As shown in the legends, the colors range from blue to red represent the
over/underestimation rates ranging from low to high, respectively.
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to 15 copies), and 3 of the 399 archaeal genomes fall outside the previous reported
analysis (up to 4 copies) (Fig. 1). Variable copies of the 16S gene within different strains
have substantially affected the estimation of the relative abundance per taxon (23). For
example, a low-abundance species with high copy number of 16S genes was likely to
be observed more frequently than a high-abundance species with a low copy number,
which prompted the development of tools attempting to overcome such biases, including
rrnDB (24), CopyRighter (25), and PICRUSt (26). There has been an ongoing debate about
whether relative abundance should be corrected via the mean 16S rRNA gene copy number
(GCN). Even though an improvement in the prediction of microbial community profiles by
GCN was reported in the literature (27), a recent study showed that 16S GCN failed to more
reliably uncover the community structure in microbial ecology studies (28), which might be
limited by inadequate records of copy numbers in the reference database. In this study, we
have provided a more comprehensive catalogue of copy numbers at the strain level or other
taxonomic levels, which could be taken as a reference for 16S GCN to allow more accurate
estimation of microbial community structure.

Consistent with previous studies, the intragenomic variation of 16S rRNA genes was
widely observed in bacteria and archaea; 1,860 strains of these possessed multiple copies of
16S rRNA genes that differed by more than 1%. Additionally, it is worth noting that some
species in which all strains exhibited high intragenomic heterogeneity (.1%) (Table S1),
including several bacterial species such as Thermobispora bispora, Streptococcus iniae,
and Vibrio natriegens, as well as a few previously reported halophilic archaea such as
Haloarcula hispanica, Haloarcula marismortui, and Halomicrobium mukohataei (29). A

FIG 4 Intragenomic and intergenomic variation across 16S rRNA genes for bacteria and archaea. (A) The mean intragenomic variation
was calculated by averaging the Shannon entropy at each position of the 16S rRNA gene in all 23,899 bacterial genomes studied.
Sequence coordinates refer to the 16S gene of Escherichia coli K-12 MG1655 (gene ID 948332). (B) The mean intragenomic variation
per base across 16S rRNA genes in all 399 archaeal genomes studied. Sequence coordinates refer to the 16S gene of Saccharolobus
solfataricus IFO 15331 (accession number NR_029127.1). (C and D) The intergenomic variation across 16S rRNA genes based on the
alignment of all bacterial (C) and archaeal (D) sequences present in the SILVA Ref NR99 database.
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FIG 5 Oversplitting, overmerging, and total error rate for full-length or partial 16S genes at clustering thresholds of 97% to 100%. The
three metrics were calculated using data sets constructed based on NCBI taxonomy. The oversplitting rate was defined as the ratio of
species which were assigned into multiple clusters (OTUs or ASVs). The overmerging rate was calculated as the ratio of clusters containing
sequences from distinct species. The total error rate represented the sum of the two values above.
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possible explanation for the presence of intragenomic heterogeneity was horizontal gene
transfer (HGT) of the 16S rRNA gene, which has been supported by several studies. Yap et al.
provided evidence that the rrnB operon of Thermomonospora chromogena was acquired
from Thermobispora bispora or other closely related species via HGT (30). Divergence of rRNA
genes within a single strain has been proposed as an adaptation to the changing natural
environment, with distinct variants being functional under different environmental condi-
tions. For example, Haloarcula marismortui harbored three rRNA operons, of which operon B
was markedly different from the other two operons in nucleotide sequence and GC content,
displaying a higher expression level at high temperatures (e.g., 50°C) than at low tempera-
tures (e.g., 15°C) (29). The similar phenomenon that different rRNA genes exhibited tempera-
ture-dependent expression also took place in other halophilic archaea, such as Haloarcula
hispanica, Haloarcula japonica, and Haloarcula amylolytica (31, 32). In addition, divergent
rRNA variants regulated gene expression and cell phenotype at the ribosome level (33, 34).
In Vibrio vulnificus, the ribosomes carrying the most variable rRNAs, namely, I-ribosomes,
preferentially translated specific mRNAs associated with stress response and carbon metabo-
lism, generating the ability to adapt rapidly to temperature and nutrient shifts (35). Our anal-
ysis of intragenomic heterogeneity for a larger number of sequenced genomes can provide
the reference for further exploring the origin and function of distinct rRNA gene variants
within the same strain.

Intragenomic heterogeneity is an interference factor for estimating microbial diversity
using 16S rRNA gene-based analysis (1), which may overestimate the number of observed
OTUs. Overestimation rates of 27.3% to 156.5% were generated for full-length or partial
16S genes at the ASV level (threshold, 100%) (Table 2), generally higher than previously
reported values (12). This was probably due to the utilization of a larger number of
sequenced genomes containing higher copy numbers of 16S rRNA genes. The V3 to V4
region is a widely used sequencing target in microbial ecology studies because of its high
overall coverage and broad phylum spectrum (36); however, the amplicon analysis based
on the V3 to V4 region may cause an overestimation of 51.7% for microbial diversity. At
the most commonly used threshold, 97%, microbial diversity was overestimated by 4.4%
when using the V4 to V5 region for such analysis, which was the lowest among all frag-
ments used in this study. Meanwhile, microbial diversity may be underestimated by the
interspecific conservation of 16S rRNA genes, as highly conservative sequences from
closely related but distinct species were prone to be lumped together (16). We also found
that the V4 to V5 region exhibited a relatively high underestimation rate, with the OTU
count being 36.2% lower than the number of species, even using the most stringent
threshold, 100%, indicating lower species resolution. Obviously, if one expects to achieve
taxonomic resolution at the species level, the V4 to V5 region is not recommended as a tar-
get for sequencing, and full-length sequencing seems to be more appropriate.

Sequence clustering has been routinely used for bioinformatics analysis of amplicon
reads retrieved from high-throughput sequencing platforms, and this assigned highly
similar sequences to multiple clusters based on a given identity threshold, which
appreciably improved the efficiency of the downstream analysis. In fact, the choice of
clustering threshold significantly affects the calculation of community alpha diversity
and should be carefully considered. A low identity threshold (e.g., 97%) may cluster
sequences from different species or even genera into the same OTU (overmerging), as
the 16S rRNA genes belonging to different species within a genus (e.g., Escherichia) are
highly similar in sequence identity, whereas a too high threshold is likely to split a spe-
cies or even a strain into multiple distinct clusters (oversplitting) due to intragenomic
variation (14, 37). Ideally, the clustering process produces a set of OTUs or ASVs, each
of which corresponds to a specific taxon, with all taxa at the same taxonomic level for
convenient comparison. Moreover, because different variable regions provided differ-
ent taxonomic resolutions, and the appropriate thresholds for different amplified frag-
ments should be determined separately rather than depending on general experience.
Hence, we also attempted to find the optimal identity thresholds of species delimita-
tion for full-length and 10 partial 16S gene segments to minimize the total error rate.
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For full-length 16S genes, the total error rate was comparatively low (25% to 26%) with
thresholds of 98.5% to 99.0% (Fig. 5), whereas it rapidly increased with thresholds
exceeding 99%. For the V4 or V4 to V5 region, thresholds between 99% and 100% led
to the minimum total error; this means that ASVs were more suitable to be adopted
than OTUs with a threshold of 97%.

It has to be conceded that, regardless of which threshold is employed, it was
impossible to yield an actual microbial structure profile when only the 16S rRNA
gene was used as the sequencing target. Hence, what we can do is minimize bias in
the estimation of microbial diversity. Our results provide quantitative data on the
degree of overestimation due to intragenomic heterogeneity and the extent of
underestimation caused by the insufficient interspecific variation of 16S rRNA genes
in prokaryotic genomes. We also propose the optimal identity thresholds for full-
length and multiple partial 16S genes to minimize the risk of overmerging and over-
splitting. Intriguingly, when NCBI taxonomy was replaced by GTDB taxonomy for the
aforementioned analysis, conclusions about the bias in estimating microbial diversity
as well as the appropriate identity thresholds for different sequencing regions remain
largely unchanged. This study will contribute to understanding how 16S rRNA gene
redundancy and heterogeneity within prokaryotic genomes affect the estimation of
microbial diversity and will provide general guidance on the choice of amplified
regions and clustering thresholds when using 16S rRNA gene-based analysis in mi-
crobial ecology studies.

MATERIALS ANDMETHODS
Genomes and taxonomic information retrieval. A total of 24,248 complete prokaryotic genome

assemblies were retrieved from the National Center for Biotechnology Information (NCBI) nonredundant
RefSeq database (https://ftp.ncbi.nlm.nih.gov/genomes/refseq/). All of the 16S rRNA gene sequences of each
genome were extracted from *_rna_from_genomic.fna.gz file using SeqKit (v2.1.0) (38). In addition, the taxon-
omy file containing the names and phylogenetic lineages of all the organisms in NCBI was downloaded from
their FTP site (https://ftp.ncbi.nih.gov/pub/taxonomy/new_taxdump/); mapping of each genome to NCBI
taxonomy was subsequently performed to obtain the standard ranks (superkingdom, phylum, class, order,
family, genus, and species). The GTDB taxonomy of each genome was obtained using GTDB-Tk (v2) (22). The
taxonomic information was used to further analyze the 16S rRNA gene copy number per genome and the
intragenomic variation of multiple copies at various taxon ranks.

Analysis of intragenomic heterogeneity of 16S rRNA genes in prokaryotes. The number of 16S
rRNA gene copies and variants and the intragenomic heterogeneity per genome were calculated as
previously described (12). Specifically, for each genome, dereplication of 16S rRNA genes was per-
formed using the fastx_uniques command in Usearch (v11.0.667) (39), which resulted in a file with
unique sequences (variants). Multiple 16S rRNA gene variants belonging to the same genome were
aligned using MUSCLE (v3.8.1551) (40), and pairwise distances between aligned sequences were
then calculated using the dist.seqs command from the mothur package (v1.46.0) (41) with default
options (calc=onegap, only counts a string of gaps as a single gap). The command will generate a
distance matrix for each genome, the maximum value of which is defined as the intragenomic heter-
ogeneity index (%).

Calculation of the bias in estimating microbial diversity. Because of the uneven distribution of
publicly available genomes across species, we randomly selected one representative for each species to
avoid overrepresentation. All 16S rRNA gene sequences of the selected genome were merged to construct
a data set (HIQ-T). Ideally, each species harbors one specific 16S rRNA gene sequence, so the sole repre-
sentatives were randomly selected to construct the reference sequence data set (HIQ-C). The random
selection was executed 10 times using a Python script (https://github.com/sjtu-piaopiao/16S_analysis.git).
Due to the differences in NCBI species and GTDB species, data sets based on NCBI taxonomy (HIQ-T-NCBI
and HIQ-C-NCBI) and GTDB taxonomy (HIQ-T-GTDB and HIQ-C-GTDB) were constructed, respectively. For
each data set, in silico PCR was performed by running the pcr.seqs program in the mothur toolset
(v1.46.0) using commonly used primers targeting different variable regions (Table 3), such as the V1 to V9
(full-length), V4, and V4 to V5 regions, in which three mismatches per primer were allowed. The amplicon
sequences obtained were aligned to the SILVA reference database (v138.1) (42), and pairwise distances
between aligned sequences were calculated using the mothur package. Based on the distance, each
amplicon was assigned to a specific OTU or ASV using the OptiClust algorithm, with the identity thresh-
olds set at 97% to 100%. Finally, the degrees of overestimation caused by full-length or partial 16S rRNA
genes were calculated by comparing the numbers of OTUs generated from HIQ-T and HIQ-C, whereas the
underestimation rates were measured by the comparison of the numbers of sequences and OTUs counts
in HIQ-C.

Shannon entropy analysis of nucleotide positions across the 16S rRNA gene. All 16S rRNA genes
per genome were aligned to the SILVA data set, and Shannon entropy was calculated at each nucleotide
position along a specific reference 16S gene sequence using the open-source software Oligotyping
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(v3.1) (43) based on the equation HðXÞ ¼ 2R
i
pilog2pi , where pi is the probability of nucleotide base i

(A, T, C, G) or the gap character. There was a considerable difference in the 16S rRNA genes between
bacteria and the archaea domain. Thus, the Escherichia coli sequence (gene ID 948332) was used as the
reference for bacteria, and the Saccharolobus solfataricus sequence (accession number NR_029127.1) for
archaea to determine the nucleotide position throughout the 16S rRNA gene. As the variable site is ge-
nome specific, the average information entropy per base was then calculated to quantify the overall
intragenomic heterogeneity at each position of the 16S rRNA gene. Analogously, the intergenomic varia-
tion per base was measured by the Shannon entropy analysis of each column in an alignment of
sequences present in the SILVA Ref NR99 database.

Calculation of oversplitting, overmerging, and total error rates. In order to minimize the risk of
splitting a single genome into multiple clusters and lumping together different species to the same clus-
ter, a range of thresholds between 97% and 100% in increments of 0.1% were evaluated using full-
length or partial 16S rRNA genes based on three metrics: oversplitting, overmerging, and total error rate,
as previously reported (37). The oversplitting rate was defined as the percentage of species which were
split into separate clusters (OTUs or ASVs), and the overmerging rate, as the percentage of clusters con-
taining amplicons from multiple species. Total error rates were computed by summing the above two
values. Python scripts that we wrote were executed to perform this calculation.
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